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We have performed a series of spinodal decomposition measurements of a three-component mi-
croemulsion system made of a surfactant Aerosol OT, water, and decane. The measurements were made
by a temperature jump from a one-phase droplet microemulsion to a two-phase droplet microemulsion
along the critical isovolume fraction line (10%) using a time resolved light scattering intensity measure-
ment technique. All three stages of the evolution were studied. Time evolution of intensities for the ini-
tial stage follows closely the linearized theory. On the other hand, time evolution of the characteristic
wave vector, the maximum scattering intensity, and the intensity distributions in the intermediate and
late stages are in good agreement with recent dynamic scaling theories.

PACS number(s): 82.70.Kj

I. INTRODUCTION

A large number of studies have been carried out about
the dynamics of phase separation. Examples of well stud-
ied systems are binary mixtures of molecular fluids,
binary alloys, and polymer blends. The dynamics of
phase separation, in all these systems, following a thermal
quench into the unstable coexistence region, proceeds ei-
ther by nucleation growth or spinodal decomposition
(SD) [1,2]. Immediately after the quench, small domains,
with local concentration roughly corresponding to that of
the two main phases, spontaneously form and grow with
time and finally result in a complete phase separation. As
the mixture evolves towards its equilibrium state, the
strong nonlinearity of the decomposition process pro-
duces an interconnected morphology that coarsens with
time. The time evolution of SD in a system near its criti-
cal point has especially attracted much attention because
the dynamics of the ordering process can be described
from the viewpoint of both the universality of critical
phenomena and the dynamical scaling concept.

Recently, attention has been focused on the dynamics
of phase separation in glasses, polymer melts, gels, and
microemulsions, which are generally called ‘“‘complex
fluids.” In such systems the dynamics, reflecting their
complex interconnected structure, is characterized by
slow relaxation processes [3]. This implies existence of
competing phenomena that can interfere with the phase
separation. However, complex systems, owing to their
longer characteristic relaxation times as compared to
those occurring in simple fluids, allow for the investiga-
tion of SD in a much wider range of phase space possible
than for simple liquid mixtures.

The entire time behavior of SD can be characterized by
three different stages, namely, the early, the intermediate,
and the late stages [4]. The linearized theory [5], the
scaling concept [6], and more recently molecular dynam-
ics (MD) simulations [7-10] have given a great impetus
to the study of the growth and the time evolution of com-
position fluctuations in such systems. Whereas the early
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and the intermediate stages of systems studied so far
show a universal behavior well accounted for by theoreti-
cal models, the late stage behavior is strongly dependent
on the specific system properties. In this stage, simple
binary mixtures and complex fluids show different
behaviors. In particular, in complex systems, well
defined slowing-down [7] and pinning phenomena [9] in
the structure factors can be observed due to strong in-
teractions or to the presence of a persistence length.

Careful attention has recently been devoted to the
study of SD in binary mixtures containing surfactant. In
fact, depending on the amount of surfactant in the solu-
tion, such a system can show a behavior that ranges from
that of a simple critical mixture to that of a complex sys-
tem. One possible reason is that such a system, depend-
ing on the surfactant concentration, can adopt many
different structural arrangements. Recent MD simula-
tions [7,10] have given some new insights into the phase
separation process in such a complex system that can be
summarized in the following way: (i) The structure fac-
tor for systems containing surfactant is different from
that for binary mixtures without surfactant. (ii) For com-
plex systems there is different late stage decomposition
behavior for the case of an irregular bicontinuous micros-
tructure and for the case of formation of micellar
domains. (iii) For moderate surfactant concentrations
the low interfacial tension of the surfactant adsorbed in-
terface behaves in such a way that, in the late stage, the
coarsening of the domain structures is considerably
slowed down. (iv) The domain formation is accelerated
by thermal fluctuations. (v) The phase separation in sys-
tems with different surfactant concentrations follows a
crossover scaling function.

On these bases we have conducted extensive experi-
mental studies of the SD in binary and ternary mixtures,
with the presence of surfactant, as a function of the sur-
factant concentration by means of time resolved light
scattering intensity measurements. Here in this paper we
report the preliminary results of dynamics of phase sepa-
ration in a three-component microemulsion system made
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of an ionic surfactant aerosal OT (AOT) (sodium di-2
ethylhexlylsulfosuccinate), water, and decane at the criti-
cal composition.

Many careful experiments [11] have given a definite
conclusion that the microemulsion, for a constant
[water]/[AOT] molar ratio (indicated as w), can be
effectively considered as a pseudobinary system. More
precisely, it has been shown that the system at constant
pressure and constant w can be treated thermodynamical-
ly as a two-component system consisting of surfactant-
coated water droplets of a specific average radius, de-
pending on the w value, dispersed in oil. Thus one can
apply the equations of the mode-coupling theory
developed for the critical dynamics in binary fluid mix-
tures to study the equilibrium dynamic critical phenome-
na of this type of microemulsion [12].

II. EXPERIMENT

The experimental setup used has already been fully de-
scribed elsewhere [13]. The most important feature is
that it works in Fourier transform scattering geometry in
order to increase the signal-to-noise ratio. To minimize
multiple scattering effects, we used a quartz cell with 1
mm thickness. The sample optical cell was thermostated
with a temperature regulation of better than =1 mK.
Each scan over the 1024 channels of the linear position
sensitive detector covering the range of wave number
0 =0.1-0.94 um ™! [Q =(47n /A)sin(6/2)] is performed
every 30 msec. Here n, A, and 0 are the refractive index
of the sample, the wavelength of the incident beam (6328
A), and the scattering angle, respectively.

The AOT-water-decane microemulsion system shows,
in a given w range, a liquid-liquid critical point character-
ized by a diverging correlation length £ and a critical
slowing down of the order parameter fluctuation [11].
The phase separation occurs upon raising the tempera-
ture. Above T, the microemulsion separates into two mi-
croemulsion phases with similar microemulsion droplets,
but having different volume fractions of surfactant-coated
water droplets (n=volume fraction of water plus surfac-
tant). Small-angle neutron scattering (SANS) experi-
ments performed in the critical region have shown that
the order parameter is the volume fraction {. By fixing
w =40.8, the critical volume fraction is 7, =0.098 and
the critical temperature 7,=39.860°C [11]. Figure 1
shows the normalized form of the T-n phase diagram of
the AOT-water-decane microemulsion system at
w =40.8 [14]. It should be noted that there is an addi-
tional feature in this phase diagram which is the percola-
tion line (determined by electrical conduction measure-
ments). It starts from the vicinity of the critical point,
cutting across the whole phase diagram, having progres-
sively decreasing percolation temperatures as the volume
fraction increases. The complete features of the phase di-
agram, including the coexisting line, spinodal line, and
percolation line, can be accounted for in terms of
Baxter’s sticky sphere model [15].

The samples have been prepared using a well estab-
lished procedure [11]. The phase separation was initiated
by a thermal quenching with a quick (lower than 0.1 sec)
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FIG. 1. Normalized phase diagram of the AOT-water-
decame droplet microemulsion system, at w =40.8 and ambient
pressure, on the temperature-volume fraction (of the droplets)
plane. The critical temperature T,=40.8°C and the critical
volume fraction i, =0.098. The open circles indicate the phase
boundary and solid circles the percolation locus obtained from
experiments [14]. Solid and dotted lines indicate, respectively,
the theoretical coexistence and percolation line and the spinodal
curve obtained by using Baxter’s sticky sphere model [15].

increase of the temperature from a temperature 0.02 K
below T, to a temperature T, above but close to T,
(T;—T,~0.05 K). The scattering intensities for
different quench depths AT=T,—T, ranging from 0.02
K up to 0.5 K above T, were measured. Corrections for
the background and attenuation of light through the sam-

ple were carried out.

III. RESULTS AND DISCUSSION

SD appears as a ring of scattered light just after the
quench. In the early stage the radius of the ring remains
constant but the intensity of the ring increases with time.
In this stage the Cahn and Hilliard (5] theory, based on
linearization of a generalized diffusion equation, describes
well the time dependent behavior of the growth of the
composition fluctuation and thus also the intensity in-
crease. After this stage, the wave number of the dom-
inant fluctuating mode decreases with time and the
decomposition enters the intermediate stage. Whereas in
the early stage the mechanism of the decomposition is ex-
plained in terms of the negative curvature of the free en-
ergy, which makes the diffusion constant negative (parti-
cles move from rare to dense regions), in the intermediate
stage the driving force for the droplet growth is the sur-
face tension. In this stage the scaling concept is ap-
propriate for the description of the growth rate of
coalescing domains [6]. In particular, it has been shown
that the scattering intensity I(Q,t) scales as
F(Q/Q,)=Q3I(Q,t), where Q, is the first moment of
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the scattering intensity. As a typical example, the time
evolution of scattering intensities for the quench depth
AT=0.05 K is shown in Fig. 2. Figure 2(a) depicts in-
tensities corresponding to the early to intermediate
stages. As one can see, initially, the scattered intensity
increases with time but with almost no change of the
wave number at the maximum intensity until one reaches
the intermediate stage. In the figure, the thick line con-
nects all the peak positions, from which one can discern
the transition point of the early to intermediate stages.
Figure 2(b) gives the scattering intensities in the late
stage.

In order to test the validity of the linearized theory for
the early stage from the measured scattering intensities
we adopt the L power plot used by Sato and Han [17]
based on modification of the linearized theory of Cahn
and Hilliard. In this theory, the scattering intensity
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1(Q,t) including the thermal noise effect is written as
1(Q,0)=I,(Q)+[I,—I4(Q)lexp[2R (Q)t], (1)

where I,(Q) is the virtual intensity arising from the
thermal noise, I, the intensity at time t =0. The growth
rate R (Q) is related to the mobility M, the composition
susceptibility ), the interdiffusion coefficient D*, and a
constant « (related to the interfacial free energy) by

R=—MQ*x '+2«Q?)=D*Q*(1—Q2/2Q2), (2

with Q,, =L(D*/Mk)'/*=Q,,(0). Q,, is the wave num-
ber where the growth rate has the maximum value and
should coincide with the wave number corresponding to
the peak intensity Q,,(¢) at t =0. The l-power plot of
Sato and Han written down in the following:

(e /11(Q0—1(Q,0)}'*={2R(QI(Q,0)—Ix(Q)]} {1 1R (Q)t + L[R(Q)PP+ - -} 3)

can be used to obtain the growth rate R(Q). As the
second-order term in ¢ is absent in Eq. (3), this equation
can be well approximated by a linear equation, so that the
growth rate can be obtained by a linear fitting. Thus the
R (Q) values obtained from Eq. (3) at various Q values are
plotted as R /Q? vs Q2. The intercept of this line with
the abscissa gives 2Q? whereas that with the ordinate
gives D*. In Fig. 3 we give the result of such a plot. One
can observe from the R /Q? vs Q2 plot for AT=0.05K a
linear behavior as stated. From the fact that values of
Q,, obtained with this procedure are in complete agree-
ment with initial peak positions of the scattering intensi-
ties against Q plots, it is confirmed that the early stage of
SD exists and the linearized theory is valid.

A scaling concept for the kinetics of phase separation
has been proposed to characterize the behavior of Q,, ()
and I, (¢) with time. Q,, (t) here represents the wave
number corresponding to the maximum scattered intensi-
ty 1,,(z). In this theory Q,,(¢) and I,,(#) are expressed by
simple power-law relations as Q,,(s)~t"% and
I,,(t)~t~P. In particular, the scaling idea was extended
to the later stage where a self-similar structure develops
in the system and a single length scale describing such a
structure is assumed to exist. The relevant length scale
&* and the wave vector Q, are determined by the early
stage behavior as Q,=Q,,(0) and £*=Q, !. The charac-
teristic time z, is related to £* and the interdiffusion
coefficient D* by t,={D*[Q,,(0)]*)} L. &% and D* are
expected to behave similarly with the correlation length
and the diffusion coefficient in the stable one-phase re-
gion. By means of 7, and Q,, the time evolution of the
phase separation process is expressed by a dimensionless
scaled relation as

0,,(1)=0,,()/Q,,(0)~7"% with r=¢/1, . )

In critical binary mixtures, when hydrodynamic effects

are considered, the exponent a can change form O to 1
from the early to the late stages of SD [1,2,4]. In the in-
termediate stage where the Brownian coagulation occurs,
a=1. The deviation of a from zero defines the onset of
the intermediate stage where S>3a. In the late stage
where the system dynamics is dominated by mass flow, a

changes from 1 to 1. In this stage 3=3a and
(@, (TP, (1)~7° . (5)

From the scaling relation F(Q/Q,)=Q3I(Q,t) we have
[Qm(r)]3lm(r)~F(Q/Qm(T)). The scaled structure fac-
tor is usually defined as [6]

F(X)=F(X)/ [ F(X)X%dX with X=0/Q,,(1).  (6)

From the viewpoint of the scaling concept in the dy-
namics of SD, Furukawa proposed [6], for the region of
self-similarity in the structure, the form

mzxﬁ/[y/8+X(y+5)] . 7)

This form suggests that F(X)=X?% for X <<1, and
F(X)=X"7" for X >>1. In the late stage of the decompo-
sition, the tail of the structure factor (large Q) follows
Porod’s law; it behaves in fact as Q ~4, indicating the for-
mation of a sharp interface (y =4). For conservative sys-
tems 8=4 is predicted (thermal fluctuations are not
effective, otherwise 8=2) for three-dimensional space.
Therefore an X ~° dependence is predicted for X > 1. The
scaling behavior of the structure factor suggests the ex-
istence of a single-length parameter describing the forma-
tion of the self-similar structure in the phase separating
system. The scaling in the structure factor should also be
related to the Q dependence of the dominant peak of the
fluctuation modes. An additional feature of the scatter-
ing functions in the late stage is the presence of a shoul-
der in the larger scattering-angle region of the dominant
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peak. This shoulder, theoretically predicted by taking
into account long-range hydrodynamic interactions [16],
has been observed in different systems [4].

Figure 4 summarizes the scaled time dependence of
Q,, (1), the scaled wave number at the maximum of the
scattering intensity distribution, for two different thermal
quenches, i.e., AT=0.05 K and AT=0.03 K. Each
curve of Q,, (7) as a function of the scaled time 7 for
different AT coincides with each other. As can be ob-
served, the exponent « is time dependent reflecting cross-
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FIG. 2. Time evolution of the light scattering intensity distri-
bution following a quench of depth AT =0.05 K. (a) depicts in-
tensities corresponding to the early and intermediate stages (the
thick line connects all the peak positions) and (b) depicts those
of the late stage.
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FIG. 3. The growth rate R (Q) obtained from the % power
plot of Sato and Han [17] plotted as R /Q? vs Q% The intercept
of the line with the abscissa gives 2(£*)~2 and with that of the
ordinates give D*.

over among various coarsening mechanisms. This
behavior was predicted by the theories of Kawasaki and
Ohta [16] and Furukawa [6]. The crossover of a form 0
to + occurs at t =1 in complete agreement with other ex-
perimental results in simple critical mixtures and theoret-
ical models [1,2,10,16]. In this time regime, the growth
mechanism is dominated by hydrodynamic effects [16]
and the 1 power law is reminiscent of a diffusive mecha-
nism. In the late stage, the establishment of interfaces
and the existence of gravity can modify the growth
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FIG. 4. Time evolution of the scaled wave number at the
peak intensity after depths of quench AT=0.05 K and
AT=0.03 K. The solid line is the result of a fit to an analytical
function developed by Furukawa [6]. As can be seen, the early
stage picture holds for the scaled time interval 0 <7 <2, the in-
termediate stage for 2 < 7 < 18, and the late stage for 7> 18.
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behavior. For example, when the two phases are inter-
connected, capillary instabilities can appear [2,18] that
give rise to a power law with a=1. The master curve
shows no evidence of pinning or slowing down at large
times as proposed by MD simulations [7,9] for a three-
component system containing surfactant. On the con-
trary, we can observe for 7>20, a=1 growth law
behavior characteristic of the late stage in fluid systems
quenched into a regime where there are interconnected
domains and the surface tension effects due to differences
in concentrations between the separating phases leading
to a crossover from 1 to 1 power-law time dependence.
In Fig. 4 we plot by a solid line the prediction of an
analytical equation given by Furukawa [6] which de-
scribes the time-scaling behavior of Q,,(7) in different
stages of spinodal decomposition. This equation displays
a well defined crossover regime and is applicable only to
fluids in the critical region neglecting gravity effects. The
curve is generated by setting the parameter 4 =0.1 and
obtaining the parameter B=0.054 from a fitting pro-
cedure. The choice of 4 =0.1 is made in order to repro-
duce the evolution behavior predicted for the intermedi-
ate stage by Kawasaki-Ohta theory [16]. It can be seen
that we obtain a very good agreement between the theory
and experiment for data in the range of early to inter-
mediate stages. The value of B we obtained is of the same
order of magnitude as those reported in the literature
(0.02<B <0.14) [6,4]. For our data the Furukawa equa-
tion does not work for 7> 18, where there is a crossover
from the intermediate to the late stage. Compared with
typical results of simple binary mixtures, our microemul-
sion system shows an onset of the late stage at a relatively
low value of the reduced time. This can be explained by
considering that at the relatively large quench depths
(AT =0.05 and 0.03 K) we have, there are large
differences in concentrations of the two phase-separated
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FIG. 5. The peak intensity I,,(7) vs 7 for the quench depth
AT=0.05 K. As can be seen, in the late stage of the SD, the
peak intensity approaches a 7° dependence (8=3a).
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FIG. 6. The scaled intensity distributions (about 30 of them)
measured in the scaled time interval 14 <7< 17.6 (the inter-
mediate stage). The scaled intensities show the universal
behavior given by the theoretical models based on the scaling
concept [1,6].

microemulsions and consequent large interfacial tensions
between the two.

Figure 5 summarizes the scaled-time dependence of the
spinodal ring intensity I,,(¢) for AT=0.05 K. As can be
seen, a log-log plot of I,,(7) vs 7 attains the slope =3 in
the time domain 7= 20, whereas the intermediate stage is
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FIG. 7. The scaled intensity distributions (about 30 of them)
measured in the scaled time interval 26.4 < 1<29.7 (late stage).
The scaled intensities in this case show also the predicted
universal behavior. In particular, one can observe the presence
of a shoulder indicating the onset of the Q ~* (Porod) behavior
after the Q ~° region.
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confined to 1<7<20. This means that (in agreement
with the theoretical suggestions) in the late stage =3
and a=1. The feature B=3a implies that a self-similar
structure is formed which is characteristic of the ordering
process in the late stage. On the other hand, in the inter-
mediate stage one has 3> 3a.

The scaled structure factors vs the scale variable
X=Q/Q,,(7) as defined by Eq. (6) are shown in Figs. 6
and 7 for AT=0.05 K at different ranges of 7 so as to
cover the range from the intermediate to the late stages
where the dynamical scaling holds. These two stages are
considered separately. We do not consider here the Q
behavior of the scaled structure factor in the early stage,
because it has been well accounted for by the Sato and
Han [17] analysis used for the evaluation of Q,,(0) and
D*. In Fig. 6 all the scaled structure factors within the
elapsed times in the range 14<7<17.6 (intermediate
stage of SD) are superposed. It can be observed that the
wave vector scaling behavior agrees with Furukawa’s
predictions [6]. In particular, we have F(X)=X? for
X <<1 (8=2) and F(X)=X "% for X>>1 (y=6). The
scaling behavior observed in the late stage is, however,
different and shown in Fig. 7 for 26.4<7<29.7.
Whereas for small X(Q <Q,,) we have again an X?
dependence, for Q > Q, we observe a shoulder located at
Q =2.5Q,, and an onset of the Porod behavior (Q ~*) for
X >20. The Q ~° scaling can only be observed in a range
1.5<Q/Q,, <2. Thus the theoretical predictions based
on scaling argument [6] hold also in this stage.

IV. CONCLUSION

In conclusion we observe that the kinetics of the phase
separation process in a three-component water-in-oil mi-
croemulsion system, at the critical volume fraction, fol-
lows the same behavior exhibited by simple critical mix-
tures studied before [4]. The time evolution of the peak
scattering intensity and the intensity distribution in the
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early stage are described satisfactorily by means of the
linearized theory of SD [5]. On the other hand, the kinet-
ics of the SD process, in both the intermediate and the
late stages, are well accounted for by the use of the scal-
ing concept. A comparison of the obtained data in the
late stage with the main results of a recent MD simula-
tion [7], carried out for binary mixtures containing sur-
factant, gives an indication that in the investigated sys-
tem the separation occurs through the formation of irreg-
ular bicontinuouslike domains. In fact, aside from the
fact that the hydrodynamic effects were not taken into
account in the MD simulation, we noted that the
behavior of the measured scaled-time evolution of the
scaled wave number Q,,(7), shown in Fig. 4, is similar to
that obtained by the MD simulation for a binary mixture
containing a very low amount of surfactant. In this case,
the SD process is said to be dominated by the bicontinu-
ous microstructure of the system (see Figs. 4, 8, and 10 of
Ref. [7]). In this regard, we may stress that in the system
investigated in our experiment the volume fraction of the
surfactant is g ~0.01. For this microemulsion system at
10% volume fraction, as can be seen from the phase dia-
gram in Fig. 1, the critical point is above the percolation
point. Perhaps percolated droplet microemulsions, as
studied extensively by one of us near the critical point by
the Baxter model [15], have a similar structural effect on
the phase separation kinetics as a bicontinuous one simu-
lated in MD. MD results for systems with higher surfac-
tant volume fractions or systems having a micellar struc-
ture are very different from that having a bicontinuous
structure. In the MD, a marked slowing down of the
time evolution of Q,, (7) is quite evident for a micellar
system.
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